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1 Introduction

Recently, it was pointed out in [1] that the three-dimensional N = 6 Chern-Simons theory

with U(N)k ×U(N)−k (ABJM theory)1 has a holographic dual description in terms of M-

theory on AdS4×S7/Zk or type IIA superstring theory on AdS4×CP
3. After the discovery,

there has been remarkable progress in understanding AdS/CFT correspondence [2] in three

dimensions, i.e., AdS4/CFT3 correspondence. Even in that situation, this duality is not yet

understood at the level of more familiar AdS5/CFT4 correspondence. One of the important

aspects is how to add flavors to the AdS4/CFT3 correspondence. In the ABJM theory we

can add flavor fields which belong to the fundamental representation of the gauge group.

Therefore the problem is how to reproduce the same setup in the holographic dual theory.

1Here k and −k denote the levels of Chern-Simons theory with each U(N).

– 1 –



J
H
E
P
0
7
(
2
0
0
9
)
0
6
5

This is important not only from the viewpoint of holographic duality but also for the

purpose of the application to some realistic models in condensed matter physics. Indeed,

the ABJM theory has been employed to realize fractional quantum Hall effect (FQHE)

recently in [3] by considering edge states.2 Notice also that in the standard Chern-Simons

Ginzburg-Landau description of FQHE, we need a charged scalar field. Such a field cannot

be found in the ABJM theory unless we introduce other fields such as flavors.

The main purpose of this paper is to find a holographic description of the N = 3

flavors in ABJM theory in terms of type IIA superstring theory, motivated by a connection

to FQHE. We will concentrate on the case with a few number of flavors, therefore the probe

approximation is valid for large N of gauge group U(N) × U(N). This is also the case for

describing flavors in N = 4 super Yang-Mills gauge theory by adding probe D7-branes to

AdS5×S5 [5]. We find that the flavor would be introduced if we consider D6-branes wrapped

over the Lens space S3/Z2 (or equivalently the real projective space RP
3) in CP

3. This D6-

brane has the degrees of freedom of choosing a Z2 Wilson line and we will identify this possi-

bility with the choice of two gauge fields of ABJM theory to which we add flavors. The probe

D6-brane respects desired R-symmetry and supersymmetry, and the same conclusion can

be derived from the argument based on the brane construction of ABJM theory [1]. We will

also calculate the fluctuations of the D6-branes and observe that the conformal dimensions

of dual operators obtained from the analysis are consistent with what are expected from the

gauge theory side. In addition, we will give a simple realization of FQHE in AdS4/CFT3

by adding the fractional D2-branes to the ABJM theory. Adding flavor D6-branes to this

setup, we will give a realization of fractional quantum Hall plateau transitions.

The organization of this paper is as follows; in section 2, we will show how to introduce

flavors to the ABJM theory and which D6-brane embedding corresponds to the flavors. This

is based on the analysis of R-symmetry, supersymmetry and tyep IIB brane construction

of ABJM theory. In section 3, we perform the analysis of fluctuation spectrum of the

D6-branes. We will find the conformal dimensions of the dual operators and confirm our

identification of the flavor D6-branes. In section 4, we will show how to model FQHE

systems by adding the fractional D2-branes to ABJM theory. Moreover, we will realize

fractional quantum Hall plateau transitions in the presence of the flavor D6-brane. Section 5

reviews our conclusions and suggests possibilities for future work.

2 Flavor D6-branes in ABJM theory

The N = 6 supersymmetric Chern-Simons gauge theory in three dimensions, often called

ABJM theory, was shown to be dual to type IIA superstring on AdS4 × CP
3 by taking

the large N scaling limit with λ = N
k kept finite [1]. This theory has the gauge group

U(N)×U(N) with the level k and −k, respectively. One of the most important deformations

of this theory should be adding flavors which belong to the fundamental representation of

the gauge groups. Since there are two gauge groups, we expect two kinds of flavors. In

the field theory side it is straightforward to construct such a theory, and the purpose of

this section is to identify which configuration is the holographic dual of the theory with

2See also [4] for other possibilities of realization of FQHE.
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flavors. We work within the probe brane approximation, therefore the fundamental flavors

are quenched. We concentrate on the case preserving the maximal supersymmetry, that is,

the theory should possess N = 3 supersymmetry.

2.1 ABJM theory with flavors

First let us include flavors in the ABJM theory from the viewpoint of gauge theory. The

ABJM theory consists of two gauge multiplets for the two copies of the gauge groups

U(N) × U(N) and bi-fundamental chiral fields (A1, A2) in the (N, N̄ ) representation and

(B1, B2) in the (N̄ ,N) representation. In order to add flavors to the ABJM theory, we

would like to introduce hypermultiplets while keeping N = 3 supersymmetry. To achieve

this, we add either of or both of the chiral multiplets (Q1, Q̃1) and (Q2, Q̃2). Here chiral

superfields Q1 and Q2 belong to (N,1) and (1, N) representation, respectively; and chiral

superfields Q̃1 and Q̃2 belong to (N̄ ,1) and (1, N̄ ), respectively. For general discussions of

the N = 3 Chern-Simons theory, refer to e.g. [1, 6].

In the ABJM theory, the interaction is essentially described by the superpotential

WABJM = Tr
[

ϕ2
1 − ϕ2

2

]

+ TrBiϕ1Ai + TrAiϕ2Bi , (2.1)

where ϕ1 and ϕ2 are the chiral superfields in the gauge multiplets. We have added hyper-

multiplets to the ABJM theory, but the interaction is determined by the requirement of

N = 3 supersymmetry and it is given by the following superpotential

Wflavor = TrQ̃1ϕ1Q1 + TrQ̃2ϕ2Q2 . (2.2)

Originally we have SU(4) R-symmetry which rotates (A1, A2, B̄1, B̄2) in the ABJM

theory. Even after the flavors are added the theory still preserves N = 3 supersymmetry

and the R-symmetry is now SU(2), which acts on the doublet (Ai, B̄i) and (Qi, Q̃i). In

addition, this N = 3 supersymmetric theory have an extra internal SU(2) symmetry which

acts on the doublets (A1, A2) and (B1, B2) simultaneously. Therefore the theory has the

symmetry SU(2)R × SU(2)I .

In this way we have shown that one or two kinds of flavors (Q1, Q̃1) and (Q2, Q̃2) can be

introduced while preserving N = 3 supersymmetry. Notice that mesonic operator can be

constructed as Q̃1(AB)lQ1 or Q̃1(AB)lAQ2. If there is only one type of hypermultiplets,

then we have only the former type of mesonic operator. If there are both flavors, we

will have both operators. In the rest of this section we will see how they are realized

by adding flavor D6-branes in the holographic dual geometry. In particular, the brane

configuration realizing the ABJM theory with flavors is constructed and the duality map

confirms the proposal.

2.2 AdS4 × CP
3 geometry

It might be useful to start from the geometry dual to the ABJM theory in order to identify

the relevant D6-brane embedding. It was argued in [1] that the dual theory is type IIA

superstring on AdS4 × CP
3, whose metric is given by3

ds2 = L2
(

ds2AdS4
+ 4ds2

CP
3

)

, (2.3)

3In this paper we assume α′ = 1 and follow the notations in [7].
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where L2 = R3/(4k) with R6 = 25π2Nk. The dilaton field is e2φ = R3/k3 = 2
5
2π

√

N/k5

and the background fluxes are

F2 =
2k2

R3
ω , F̃4(≡ F4 − C1 ∧H3) = −3

8
R3ǫAdS4 , H3 = 0 . (2.4)

Here ǫAdS4 is the volume form of the unit radius AdS4 and ω is the Kähler form of CP
3. The

metric of CP
3 can be written down explicitly as in (2.9), but it is instructive to construct

the metric for later purpose. This background preserves 24 out of total 32 supersymmetries

of type IIA supergravity [1, 8].

The metric of CP
3 can be obtained by taking large k limit of the orbifold S7/Zk.

Actually this fact was used to construct the dual geometry (2.3) through the dimensional

reduction of the near horizon geometry of M2-branes at the orbifold C
4/Zk, which is given

by AdS4 ×S7/Zk. We can express S7 by the complex coordinates X1,X2,X3 and X4 with

the constraint |X1|2 + |X2|2 + |X3|2 + |X4|2 = 1. It is convenient to parameterize S7 as4

X1 = cos ξ cos
θ1
2
ei

χ1+ϕ1
2 , X2 = cos ξ sin

θ1
2
ei

χ1−ϕ1
2 ,

X3 = sin ξ cos
θ2
2
ei

χ2+ϕ2
2 , X4 = sin ξ sin

θ2
2
ei

χ2−ϕ2
2 , (2.5)

where the ranges of the angular variables are 0 ≤ ξ < π
2 , 0 ≤ χi < 4π, 0 ≤ ϕi < 2π and

0 ≤ θi < π. The Zk orbifold action is taken along the y-direction as y ∼ y + 2π
k , where the

new coordinate y is defined by

χ1 = 2y + ψ , χ2 = 2y − ψ . (2.6)

In the new coordinate system, the S7 can be rewritten as

ds2S7 = ds2
CP

3 + (dy +A)2, (2.7)

where

A =
1

2
(cos2 ξ − sin2 ξ)dψ +

1

2
cos2 ξ cos θ1dϕ1 +

1

2
sin2 ξ cos θ2dϕ2 . (2.8)

In this way we find the metric of CP
3 as

ds2
CP

3 = dξ2 + cos ξ2 sin2 ξ

(

dψ +
cos θ1

2
dϕ1 −

cos θ2
2

dϕ2

)2

(2.9)

+
1

4
cos2 ξ

(

dθ2
1 + sin2 θ1dϕ

2
1

)

+
1

4
sin2 ξ(dθ2

2 + sin2 θ2dϕ
2
2) .

The ranges of the angular valuables are given by

0 ≤ ξ <
π

2
, 0 ≤ ψ < 2π , 0 ≤ θi < π , 0 ≤ ϕi ≤ 2π . (2.10)

In this coordinate system, the RR 2-form F2 = dC1 in the type IIA string is explicitly

given by

F2 = k
(

− cos ξ sin ξdξ ∧ (2dψ + cos θ1dϕ1 − cos θ2dϕ2)

−1

2
cos2 ξ sin θ1dθ1 ∧ dϕ1 −

1

2
sin2 ξ sin θ2dθ2 ∧ dϕ2

)

≡ −2k2

R3
ω . (2.11)

The explicit expression of the Kähler form ω can also be read off from this equation.

4We follow the notation in [9].

– 4 –



J
H
E
P
0
7
(
2
0
0
9
)
0
6
5

2.3 Flavor D6-branes

Utilizing the explicit metric of CP
3, we would like to discuss the D-brane configuration

in AdS4 × CP
3, which is dual to adding flavors to ABJM theory. The corresponding D6-

brane should be wrapped over AdS4 times a topologically trivial5 3-cycle in CP
3. As

discussed above, the original ABJM theory has SU(4) R-symmetry, which corresponds to

the SU(4) symmetry of CP
3. Adding the flavors reduces the R-symmetry into SO(4) =

SU(2)R × SU(2)I , therefore we should find a cycle with the SO(4) symmetry.

We assume that the coordinates (X1,X2,X3,X4) correspond to (A1, B̄1, B̄2, A2), and

in this case the SU(2) symmetry rotates (X1,X2) and (X3,X4) at the same time. We want

to have a 3-cycle invariant under this rotation, and a natural one is given by

θ1 = θ2(= θ) , ϕ1 = −ϕ2(= ϕ) , ξ =
π

4
. (2.12)

The induced metric becomes

ds2 = 4L2

(

1

4
(dψ + cos θdϕ)2 +

1

4
(dθ2 + sin2 θdϕ2)

)

, (2.13)

where 0 ≤ ψ < 2π, 0 ≤ θ < π and 0 ≤ ϕ < 2π. This metric looks like the metric of a

regular S3 with the unit radius,6 though in that case the periodicity should be 0 ≤ ψ < 4π

instead of 0 ≤ ψ < 2π. Therefore we conclude that the 3-cycle we found is actually the

Lens space S3/Z2. If we describe the S3 by w2
1 + w2

2 + w2
3 + w2

4 = 1, then the Z2 orbifold

action is given by

(w1, w2, w3, w4) → (−w1,−w2,−w3,−w4) . (2.14)

An important property is that this Z2 action is the center of SO(4), and hence a D6-brane

wrapped over this S3/Z2 preserves the SO(4) symmetry as expected. The volume of S3/Z2

can be computed as Vol(S3/Z2) = 8π2L3. As we will see later, this S3/Z2 is the same as

the RP
3 which is embedded into CP

3 in a rather trivial way.

It is important to notice that there is a non-trivial torsion cohomology as

H2(S3/Z2,Z) = Z2 , (2.15)

and a gauge theory on this manifold has two vacua due to the Z2 torsion. Let us define [α]

as the torsion 1-cycle in S3/Z2 generated by 0 ≤ ψ < 2π, then the Z2 charge is interpreted

as the Z2 Wilson loop

e
i

R

[α] A
= ±1 . (2.16)

In other words, we can construct two types of D6-branes depending on the Wilson loop.

In the following, we will show that one of them provides a flavor for one of the two U(N)

gauge groups and the other does the other one. This is motivated by the Douglas-Moore

prescription of D-branes at Z2 orbifold [10], although our setup is a T-dual of them.

5If a brane is wrapped over a topologically trivial cycle in CP
3, then the brane over AdS4 does not carry

any charge. Otherwise, it is not possible to wrap the whole AdS4 space. The topologically trivial cycle

tends to shrink due to the brane tension, but this brane configuration can be actually stabilized due to the

curvature of AdS space. See, e.g., [5] for more detail.
6 Notice that we can rewrite (2.13) as ds2 = dξ2 + cos2 ξdφ2

1 + sin2 ξdφ2
2 by setting ξ = θ/2, ψ = φ1 +φ2

and ϕ = φ1 − φ2.

– 5 –
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2.4 Supersymmetry of D6-brane

In the previous subsection we have found a candidate 3-cycle on which the flavor D6-brane

should be wrapped based on the R-symmetry argument. Since a three-dimensional N = 3

superconformal field theory possesses 12 supersymmetries, our flavor brane configuration

should preserve half of the 24 supersymmetries in the bulk. In order to count the number

of supersymmetries of the D6-brane configuration in AdS4×CP
3, it is useful to uplift to M-

theory and to utilize the Killing spinor in AdS4×S7/Zk. Adding the eleventh dimension y,

the two ten-dimensional 16-components (Weyl) Killing spinors {ǫ±} is combined into a 11D

32-component Killing spinor. Following [11] we define the angular coordinates Xi = µie
iζi

instead of (2.5) with {µ1, µ2, µ3, µ4} = {sinα, cosα sin β, cosα cos β sin γ, cosα cos β cos γ}.
The Killing spinor is now given by

ǫ = e
α
2

γ̂γ4e
β
2

γ̂γ5e
γ
2
γ̂γ6e

ξ1
2

γ47e
ξ2
2

γ58e
ξ3
2

γ69e
ξ4
2

γ̂γ10e
ρ
2
γ̂γ1e

t
2
γ̂γ0e

θ
2
γ12e

φ
2
γ23ǫ0 , (2.17)

where (x0, x1, · · ·, x10) = (t, r, θ, φ, α, β, γ, ξ1 , ξ2, ξ3, ξ4) and ǫ0 is a constant 32-component

Majorana spinor in 11D. The eleventh dimension y is a linear combination of the four

phases {ζi}.
In AdS4×CP

3, consider a D6-brane extending along the entire AdS4 and the {α, β, γ}-
directions while sitting at constant phase directions. When lifted to M-theory, it corre-

sponds to a Taub-NUT spacetime along the 016789-directions. Then the supersymmetries

preserved are given by the constraint

Γ6ǫ = ǫ where Γ6 = γ0123456 . (2.18)

Therefore it projects out half of the supersymmetries by

γ0123456ǫ0 = ǫ0 . (2.19)

Then the orbifolding action zi → zie
i2π/k further projects out 4 supersymmetries. In total,

this 11D system with the Taub-NUT spacetime has 12 supersymmetries. Performing the

dimensional reduction on the y-direction, we return to the D6-brane extending along AdS4

and the {α, β, γ}-directions inside CP
3 and it preserves 12 supersymmetries. Since {α, β, γ}

are the three real directions in CP
3, the 3-cycle wrapped by the D6-brane is RP

3.

Utilizing the SU(4) symmetry of CP
3, we can show that the above D6-brane config-

uration is indeed the one obtained before. We perform the following SU(4) symmetry

transformation of CP
3

1√
2
(X1 +X3) → X1 ,

−i√
2
(X1−X3) → X2 ,

1√
2
(X2 +X4) → X3 ,

i√
2
(X2−X4) → X4 .

(2.20)

Then, the cycle defined by the condition (2.12) is mapped to the one with the induced metric

ds2 = dξ2 +
1

4
cos2 ξdθ2

1 +
1

4
sin2 ξdθ2

2 , (2.21)

which may be given by the replacement

ψ + ϕ→ θ1 , −ψ + ϕ→ θ2 ,
θ

2
→ ξ . (2.22)

– 6 –
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This cycle can also be obtained by setting ϕi = 0 and χi = 0 in the new coordinates (2.5). If

we take into account the presence of Zk orbifold action carefully, we can find that the ranges

of coordinates are 0 ≤ ξ < π/2 and 0 ≤ θi < 2π with the Z2 identification θ1 → θ1 + π

and θ2 → θ2 + π. Thus we again obtain S3/Z2, which can be mapped to the previous

one (2.13) by the SU(4) symmetry of the background. In this way we have proved that the

D6-brane over S3/Z2 discussed in the previous subsection preserves 12 supersymmetries as

we wanted to show. Notice also that from this construction we can clearly understand the

3-cycle S3/Z2 as the RP
3 inside CP

3.

2.5 Relation to brane configuration

One of the confirmation of the duality between the ABJM theory and type IIA super-

string on AdS4 × CP
3 is made through the realization of ABJM theory with the type IIB

brane configuration [1] (see also [12, 13]). Therefore, the construction of brane configura-

tion corresponding to the ABJM theory with flavors would give a strong support of our

identification of flavor D-brane.

Let us begin with the ABJM theory without flavor. We introduce a standard cartesian

coordinate x0, x1, · · ·, x9 with x6 compactified on a small circle. Then the type IIB brane

configuration of the ABJM theory is given by N D3-branes which extend in the 0126-

directions, a NS5-brane in 012345 and a (1, k)5-brane in 012[3, 7]θ [4, 8]θ [5, 9]θ . Here [i, j]θ
means that it extends in the particular direction between ∂i and ∂j so that it preserves

N = 3 supersymmetry [12, 13]. Since the NS5-brane and (1, k)5-brane divide the circular

D3-branes into two segments, the gauge group becomes U(N) × U(N). The chiral matter

multiplets Ai and Bi come from open strings between these two parts of the D3-branes.

In order to introduce flavors to ABJM theory, we need to insert D5-branes to this setup.

Here we introduce D5-branes in the 012789-directions such that the brane configuration

preserves N = 3 supersymmetry as confirmed in appendix A.7 Since there are two segments

of D3-branes, we can insert D5-branes in either or both of these two segments. If we insert a

D5-brane in a segment, then we have one type of hypermultiplets, say, (Q1, Q̃1). If we insert

another D5-brane in the other segment, then we have one more type of hypermultiplets

(Q2, Q̃2). When Nf
1 and Nf

2 D5-branes are inserted in each segments of D3-branes, the

number of flavors for Q1 and Q2 are increased by Nf
1 and Nf

2 , respectively. In this paper

we will set Nf
1 and Nf

2 to be zero or one. Mesonic operators may be interpreted as the

strings stretching between the D5-branes, and strings between the same brane correspond

to the type of Q̃1(AB)lQ1 and strings between the different branes correspond to the type

of Q̃1(AB)lAQ2. Notice that this D5-brane is a standard flavor D-brane in the brane

configurations of three-dimensional N = 4 supersymmetric Yang-Mills gauge theory [15].

In the following we will show that when mapped to type IIA theory the above D5-brane

actually corresponds to the D6-brane wrapped over AdS4 times the cycle S3/Z2 (2.13)

obtained above. We start with the case without flavor again. Via the standard duality

map, the type IIB brane configuration can be lifted to M-theory with M2-branes at the

7The same D5-brane is also discussed in the IIB brane configuration in the independent work [14], quite

recently from a different motivation.
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intersection of two KK monopoles. Before adding the M2-branes, this geometry takes the

form of R1,2×X8 and the explicit metric of X8 can be found in [1] (see also [16]). There the

coordinates of eight-dimensional manifold X8 were expressed by (ϕ1, ~x
1), (ϕ2, ~x

2), which

is essentially two copies of Taub-NUT spacetimes warped with each other. The relation

between this coordinate of X8 and the brane configuration is given by ϕ1 = x6, ϕ2 = x10,

~x1 = (x7, x8, x9) and ~x2 = (x3, x4, x5). Comparing with the coordinates (X1,X2,X3,X4)

of C
4/Zk in (2.5), we have

χ1 = −2ϕ′
1 ≡ −2

(

ϕ1 −
ϕ2

k

)

, χ2 = ϕ′
2 ≡ ϕ2

k
, (2.23)

~x′1 = ~x1 = r2 cos2 ξ(cos θ1, sin θ1 cosϕ1, sin θ1 sinϕ1) ,

~x′2 = ~x1 + k~x2 = r2 sin2 ξ(cos θ2, sin θ2 cosϕ2, sin θ2 sinϕ2) ,

where r is defined by
∑4

i=1 |Xi|2 = r2. This leads to x6 = ψ and x10 = ky − k
2ψ.

We would like to introduce a 6-brane in this setup. Our D6-brane wrapped over

S3/Z2 (2.13) corresponds to a KK-monopole in M-theory. As is clear from the description

in the coordinate (2.5), it is simply expressed as the codimension-three surface of ~x′1 = ~x′2,

which leads to the constraint ~x2 = 0. Taking the T-duality in the 6-direction (notice that

the D6-brane extends in the 6-direction), it becomes a D5-brane in the IIB string which

extends in the 012789-directions. This argument almost confirmed that our D6-brane over

S3/Z2 corresponds to the D5-brane introduced in the type IIB brane configuration with

one subtlety. Namely, we only have to explain the fact that a D5-brane can be inserted in

either of the two segments. Actually this fact is consistent with our D6-brane setup since

we have the choice of Z2 Wilson loop in the ψ-direction. Performing the T-duality in the

x6 = ψ direction, these two possibilities correspond to the two segments of the D3-branes

on which we can place the D5-brane.

3 Meson spectrum from flavor brane

One of the most important checks of AdS/CFT correspondence is the comparison of spec-

trum. In this section we would like to investigate the fluctuation of D6-brane wrapping over

AdS4 × S3/Z2 inside AdS4 × CP
3. The spectrum of the fluctuation should be reproduced

by the conformal dimensions of dual operators. We will study the fluctuation of a scalar

mode transverse to the S3/Z2 in CP
3 and the gauge field on the worldvolume. We start

from the D6-brane action

SD6 = − 1

(2π)6

∫

d1+6xe−φ
√

− det(gab + 2πFab) (3.1)

+
(2π)2

2(2π)6

∫

C3 ∧ F ∧ F +
1

(2π)6

∫

C7 .

Here gab is the induced metric of the D6-brane, Fab is the field strength on the worldvolume,

and C3, C7 are the induced 3-form and 7-form potentials. There are other types of Chern-

Simons term, but we included only those relevant for our purpose. We adopt the static
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gauge and the measure is d1+6x = dtdxdydrdθdψdϕ. In the following we use µ for t, x, y

and i, j for S3 coordinates. In the i, j label directions are given by

dσ1 =
1

2
dθ , dσ2 =

1

2
dψ , dσ3 =

1

2
sin θdϕ . (3.2)

In the case of D7-brane in AdS5 ×S5 similar analyses have been done in [17] (see also [5]).

3.1 Scalar perturbation

First we study the fluctuations of a scalar mode, which correspond to the scalar pertur-

bation of D6-brane orthogonal to the worldvolume directions. Here we consider only the

fluctuation of ξ = π/4 + η with small η and the fluctuations along the other two directions

will be obtained by the symmetry argument. For this purpose the Chern-Simons term with

7-form potential is important. Using the fact that F2 = ∗F8 = −2k2

R3 ω, the 7-form potential

C7 can be written as

C7 = −k
2L4

R3
σ ∧ ω ∧ r2dt ∧ dx ∧ dy ∧ dr , (3.3)

where σ is defined by dσ = ω. Under the condition of θ1 = θ2 and ϕ1 + ϕ2 = 0, we find

σ = −L2(cos2 ξ − sin2 ξ)(dψ + cos θdϕ) , (3.4)

ω = L2
(

4 cos ξ sin ξdξ ∧ dψ + (cos2 ξ − sin2 ξ) sin θdθ ∧ dϕ+ 4cos ξ sin ξ cos θdξ ∧ dϕ
)

,

therefore we have

C7 =
k2L8

R3
(cos2 ξ − sin2 ξ)2r2 sin θdt ∧ dx ∧ dy ∧ dr ∧ dψ ∧ dθ ∧ dϕ . (3.5)

Expanding the D6-brane action (3.1), the quadratic term of η is given by

δS =
k

2(2π)6L

∫

d1+6x
√

− det g(2gab∂aη∂bη − 4η2) . (3.6)

In our notation
√− det g = L7r2 sin θ. The equation of motion for η leads to

1√− det g
∂a

(

√

− det ggab∂b

)

η + 2η = 0 , (3.7)

therefore we have

1

r2
∂µ∂

µη +
1

r2
∂r(r

4∂r)η +
1

4
DiD

iη + 2η = 0 . (3.8)

Here Di represents covariant derivatives on S3. Using the separation of variables we can

write as

η = ρ(r)eik·xY l(S3) (3.9)

with the spherical harmonics

DiD
iY l(S3) = −l(l + 2)Y l(S3) . (3.10)
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As discussed in the apppendix B, the Z2 orbifold action restricts l ∈ 2Z. If the scalar field

feels the Z2 holonomy along the ψ-direction, then the restriction is l ∈ 2Z + 1. With the

help of separation of variables, the equation of motion reduces to

[

∂2
r +

4

r
∂r +

8 − l(l + 2)

4r2
− k2

r4

]

ρ(r) = 0 . (3.11)

We assume the regularity at the horizon of AdS4, i.e. at r = 0. Then the above equation

can be solved by the modified Bessel function as

ρ(r) = r−
3
2K l+1

2

(

k

r

)

. (3.12)

As usual the conformal dimension of dual operator ∆ can be read off from the boundary

behavior at r → ∞ as r−∆ or r3−∆. Expanding the solution around r → ∞, we find

ρ(r) ∼ c1r
− 3

2
+ l+1

2 + c2r
− 3

2
− l+1

2 , (3.13)

with some coefficients c1, c2. Therefore the conformal dimension of dual operator is

∆ =
l

2
+ 2 . (3.14)

Without any holonomy the conformal dimension is ∆ = 2 + n with n = 0, 1, 2, . . . and

the dual operator is of the form ψ̃1(AB)nψ1. The lowest one n = 0 is interpreted as

the (supersymmetric) mass deformation of the flavor. In the case with Z2 holonomy, the

conformal dimension is ∆ = 2+n+1/2 with n = 0, 1, 2, . . . and the dual operator is of the

form ψ̃1(AB)nAψ2.
8

3.2 Vector perturbation

On a D6-brane, there is a U(1) gauge field and we can study the spectrum due to a small

shift of the gauge field. The equations of motion are given by

1√− det g
∂a

(

√

− det gF ab
)

− 3

8
ǫbij∂iAj = 0 . (3.15)

Here we have used the fact that the induced 3-form potential can be written as

C3 = −kL
2

2
r3dt ∧ dx ∧ dy . (3.16)

Following [17] it can be shown that it is enough to consider the following three types of

gauge field configuration. They are given by

Type I: Aµ = 0 , Ar = 0 , Ai = ρ±I (r)eik·xY l,±
i (S3) , (3.17)

Type II: Aµ = ξµρII(r)e
ik·xY l(S3) , ξ · k = 0 , Ar = 0 , Ai = 0 , (3.18)

Type III: Aµ = 0 , Ar = ρIII(r)e
ik·xY l(S3) , Ai = ρ̃III(r)e

ik·xDiY
l(S3) . (3.19)

8Since the other two scalar modes can be obtained by the symmetry transformation of CP
3 while fixing

the S3/Z2, it is natural to guess that the conformal dimensions of their dual operators are also the same

as in this case.
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The vector components along S3 directions can be expanded by the vector spherical har-

monics, which satisfy

DiD
iY l,±

j −Rk
jY

l,±
k = −(l + 1)2Y l,±

j , (3.20)

ǫijkDjY
l,±
k = ±(l + 1)Y l,±

k , DiY l,±
i = 0 ,

where Rk
j = 2δk

j is the Ricci tensor for S3 with the unit radius. They belong to ( l∓1
2 , l±1

2 )

representation with respect to SU(2)R × SU(2)L.

Let us start with type I case. The equations of motion (3.15) lead to

1

r2
∂µ∂

µAj +
1

r2
∂r(r

4∂rA
j) +

1

4
(DiD

iAj − 2δj
iA

i) − 3

2
ǫjkl∂kA

l = 0 . (3.21)

Here we have used

1√
g
∂i
√
g(∂iAj − ∂jAi) = DiD

iAj +DjDiA
i − [Di,D

j ]Ai (3.22)

and DiA
i = 0, [Di,D

j ]Ai = R j
i A

i. Then we find

∂2
rρ

±
I + 4∂rρ

±
I − k2

r4
ρ±I − (l + 1)2

4r2
ρ±I ∓ 6

4
(l + 1)ρ±I = 0 . (3.23)

The solution for ρ+
I (r) regular at r = 0 is

ρ+
I (r) = r−

3
2K l+4

2

(

k

r

)

∼ c1r
− 1

2
(l+7) + c2r

1
2
(l+1) , (3.24)

thus the conformal weight of the dual operator is ∆+ = l
2 + 7

2 , where l ∈ 2Z + 1 without

holonomy and l ∈ 2Z with Z2 holonomy. The solution for ρ−I (r) regular at r = 0 is

ρ−I (r) = r−
3
2K l−2

2

(

k

r

)

∼ c1r
− 1

2
(l+1) + c2r

1
2
(l−5) , (3.25)

thus the conformal weight of the dual operator is ∆− = l
2 + 1

2 with the same condition for l

as in ρ+
I case. The lowest one is given by l = 1 case, which is in the (1, 0) representation and

transforms as the triplet of SU(2)R. The dual operator can be identified with the triplet

O1 = {Q̄Q− ¯̃QQ̃, Q̃Q, ¯̃QQ̄} of the scalar field in the hypermultiplet. This identification is

quite important since the other cases follow only with the (super)symmetry arguments.

The type II case can be analyzed in the same way. The equations of motion lead to

1

r4
∂ν∂

νAµ + ∂r

(

r2∂r

(

1

r2
Aµ

))

+
1

4r2
DiD

iAµ = 0 , (3.26)

thus we obtain
(

−k
2

r4
+ ∂2

r +
2

r
∂r +

8 − l(l + 2)

4r2

)

ρII(r) = 0 . (3.27)

The solution to this equation regular at r = 0 is given by

ρII(r) = r−
3
2K l+1

2

(

k

r

)

∼ c1r
l
2
−1 + c2r

− l
2
−2 , (3.28)
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and the conformal dimension of the dual operator is ∆ = l
2 + 2. The restriction to l is the

same as the scalar case and l ∈ 2Z without holonomy and l ∈ 2Z + 1 with Z2 holonomy.

For type III case we first set b = µ. Then we obtain the relation

∂r(r
2ρIII(r)) −

1

4
l(l + 2)ρ̃III(r) = 0 . (3.29)

For l = 0, the solution behaves as ρIII ∼ 1/r. Since it is singular at r = 0 we remove l = 0

mode. Then the equations of motion for b = r or b = j read

r2∂2
r (r2ρIII(r)) − k2ρIII(r) −

1

4
r2l(l + 2)ρIII(r) = 0 , (3.30)

and the solution regular at r = 0 is

ρIII(x) = r−
3
2K l+1

2

(

k

r

)

∼ c1r
− l

2
−2 + c2r

l
2
−1 , (3.31)

thus ∆ = l
2 +2, where l = 2, 4, 6, . . . without holonomy and l = 1, 3, 5, . . . with Z2 holonomy.

3.3 Spectrum and the Z2 Wilson loop

Let us summarize the results obtained in this section. Due to the choice of the Z2 Wilson

loop, we have two types of D6-branes. Irrespective of the choice of Wilson loop, open

strings on the same brane do not feel the effects of Wilson loop. Therefore, the scalar fields

and the gauge field from the open string do not receive the Z2 holonomy. The conformal

dimensions of the dual operators are in this case ∆ = n + 2 with n = 0, 1, 2, . . . for scalar

fields and gauge field in the (n, n) representation. For type III case n = 0 is removed. For

type I, it is given by ∆ = n + 3 in the (n − 1, n) representation and ∆ = n + 1 in the

(n + 1, n) representation. Notice that the conformal dimensions are always integers. This

is consistent with our identification of a D6-brane with a flavor for either of the two U(N)

gauge groups, where excitations of bi-fundamental scalars Ai and Bi should always include

even number of these scalar fields with ∆ = 1/2 as explained before.

On the other hand, if we consider an open string between two different branes, then

the fields coming from the open string receives the Z2 holonomy along the non-trivial cycle.

In this case the conformal dimensions of dual operator are ∆ = n+5/2 with n = 0, 1, 2, . . .

for scalar fields and gauge field in the (n + 1/2, n + 1/2) representation. For type I, it

is given by ∆ = n + 7/2 in the (n − 1/2, n + 1/2) representation and ∆ = n + 3/2 in

the (n + 3/2, n + 1/2) representation. The conformal dimensions take always half integer

numbers in this case. Again these facts can be explained if we assume that two D6-branes

with different Z2 Wilson lines correspond to flavor for two different gauge groups. In this

way, our results of the spectrum support our identification of flavor D6-branes described

in section 2.3.

4 Fractional Quantum Hall Effect and ABJM theory

One interesting application of ABJM theory to condensed matter physics is to use it to

model fractional quantum Hall effects holographically [3]. This stems from the fact that

the low energy effective description of FQHE with filling faction9 ν = 1
k (where k ∈ Z) can

9In particular, if we set k = 1, we can realize the integer quantum Hall effect.
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be captured by a U(1)k Chern-Simons theory (see e.g. the text book [18]). The action is

SFQHE =
k

4π

∫

A ∧ dA+
1

2π

∫

A ∧ Fext , (4.1)

where Fext = dAext is the external electromagnetic field applied to the FQHE sample, while

A is the internal gauge field that describes the low energy degrees of freedom of FQHE.

In a FQHE system, the parity symmetry is broken. On the other hand, the original

ABJM is parity-even since the two U(N) gauge groups are interchanged during a parity

transformation. Therefore, we need to break the parity symmetry of the ABJM theory

in order to use it to model FQHE. One way to achieve this is by adding M fractional

D2-branes (i.e. D4-branes wrapped on CP
1). On the gravity side, these M fractional D2-

branes are unstable and would fall into the horizon of AdS4, leaving only NSNS 2-form

flux behind [19]
∫

CP
1
B2 = (2π)2

M

k
. (4.2)

On the field theory side, the gauge group U(N)k × U(N)−k changes into U(N + M)k ×
U(N)−k, thus breaking the parity symmetry. Treating the U(N)k ×U(N)−k part which is

common to both sides as spectators and extracting the U(1) ⊂ U(M) part of the Chern-

Simons gauge theory, we arrive at U(1)k Chern-Simons action (first term in (4.1)) that

encodes the low energy description of FQHE.

Adding D4-brane wrapped on CP
1 breaks the parity symmetry by shifting the rank

of one of the two gauge groups. Another way to break parity symmetry is to add l D8-

branes wrapped on CP
3. As shown in [3, 20], it shifts the level of one of the gauge groups:

U(N)k×U(N)−k changes into U(N)k+l×U(N)−k. However, we will not discuss this system

in the present work, leaving its application as a future problem.

In one of the models constructed in the recent paper [3], FQHE was realized by inserting

defect D4 or D8-branes which are interpreted as edge states of the Chern-Simons gauge

theory. Below we will show that we can also model FQHE without adding edges states,

expressing everything purely in terms of RR-fluxes in the bulk AdS4. Moreover, we will

find that an addition of D6-branes enables us to describe a class of FQH plateau transitions.

4.1 Background RR-field as external field

The fractional D2-brane (namely D4-brane wrapped on CP
1) has the world-volume action

SD4 = −T4

∫

d5σe−φ
√

− det(g + 2πF ) + 2π2T4

∫

C1 ∧ F ∧ F , (4.3)

where T4 = (2π)−4 in the unit α′ = 1 and C1 is sourced by the k units of the D6-brane

flux, which leads to
∫

CP
1 F2 = 2πk. Integrating over the internal CP

1, the Chern-Simons

term of the D4-brane becomes

SCS
D4 =

k

4π

∫

R1,2

A ∧ dA . (4.4)

Thus we obtained the first term in the Chern-Simons action (4.1) with the internal gauge

field A. In other words, this Chern-Simons theory is the U(M) part of the U(N+M)×U(N)

gauge groups.
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To couple the internal gauge field A to an external source Aext, i.e. to realize the second

term in action (4.1), we need to turn on some background RR-flux. Recall that the original

ABJM theory has background RR-flux

F2 =
2k2

R3
ω , F̃4(≡ F4 −A1 ∧H3) = −3

8
R3ǫAdS4 , H3 = 0 (4.5)

in AdS4 × CP
3. We need to modify the RR-flux such that it provides an external gauge

field that couple to A living on fractional D2-branes.

It is easy to see that we can simply turn on additional RR 3-form potential of the form

C3 =
4πk

R3
Aext ∧ ω , (4.6)

where the 1-form Aext lies inside AdS4 and will serve as the external gauge field. This

extra C3 sources10 an additional Chern-Simons term on the fractional D2-brane:

1

(2π)4

∫

R1,2×CP
1
2πF ∧C3 =

1

2π

∫

R1,2

Aext ∧ F , (4.7)

which gives the correct coupling to the external field (i.e. the second term of (4.1)). Then

after taking into account the kinetic term, we successfully realize the FQHE system coupled

to the background RR-field Aext as defined by the action (4.1).11

A D-brane configuration modeling the FQHE has already been given in [21], which is

constructed from D0, D2, D6 and D8-branes (see also [22] for other brane model of FQHE).

This model looks similar to ours in the sense that a RR field plays the role of the external

magnetic field in FQHE.12 It would be very interesting to pursuit the relations further as

this may lead to the holographic construction of [21].

4.2 Holographic dual

Now we analyze the IIA supergravity with the modified RR-flux profile. We assume the

following ansatz

F2 =
2k2

R3
ω + FD2 , F̃4 = −3

8
R3ǫAdS4 +

4πk

R3
Fext ∧ ω , (4.8)

and we require that the 3-form H3 has indices only in the AdS4 directions. Moreover, FD2

and Fext have indices in the AdS4 directions as well. We are interested in a combination

of these fluxes which become a massless gauge field [1]. In this ansatz we find

∗F2 =
R3

16
ǫAdS4 ∧ ω2 + ∗4FD2 ∧

ω3

6
, ∗F̃4 =

k2

R3
ω3 +

2πk

R3
∗4 Fext ∧ ω2 , (4.9)

10Note that the volume of CP
n is given by

R

CPn

ωn

n!
= πn

n!
(2L)2n in our convention.

11Similarly, we can describe a FQHE system on the D2-branes instead of on fractional D2-branes by

turning on some extra RR 1-form C1 ≡ AD2. The 1-from serves as the external gauge field, and it couples

to the D2-brane in the standard way: 1
2π

R

R1,2 AD2 ∧ F . In this paper we will only discuss FQHE system

living on the fractional D2-branes.
12We would like to thank O. Bergman for pointing this out to us and for discussing possible relations.
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where ∗ and ∗4 denote the Hodge duals in the total ten-dimensional spacetime and the AdS4

spacetime, respectively. The equations of motion of fluxes are written at the linearized level

as follows

dFD2 = 0 , dH3 = 0 , dFext = − k

2π
H3 , d ∗4 FD2 =

6k2

R3
H3 ,

d ∗4 Fext = 0 ,
1

g2
s

d ∗4 H3 = −24πk3

R6
∗4 Fext −

6k2

R3
FD2 . (4.10)

It is easy to see that the mode

FD2 = −4πk

R3
∗4 Fext , H3 = 0 , (4.11)

becomes a massless 2-form field strength. Under this constraint, the equations of mo-

tion (4.10) become exact even beyond the linear order approximation.

Now we assume that the background includes M fractional D2-branes, which corre-

spond to the NSNS 2-form (4.2). If we concentrate on the massless mode (4.11), we find

that the type IIA action is reduced to

Sext = − R3

48π2k

∫

AdS4

Fext ∧ ∗Fext −
M

4πk

∫

AdS4

Fext ∧ Fext , (4.12)

where the second term comes from the Chern-Simons term of the IIA supergravity − 1
4κ2

∫

B2∧
dC3 ∧ dC3. In the second term of the action, the topological term

∫

Fext ∧ Fext leads to

a boundary Chern-Simons term
∫

Aext ∧ Fext in the AdS/CFT procedure (see also [23]).

Since Aext is the external gauge field probing FQHE, we can immediately read off the

fractionally quantized Hall conductivity:

σxy =
M

2πk
=
M

k
· e

2

h
, (4.13)

where we have restored the electron charge e and ~ = 1.

In this way we have shown that the ABJM theory with M > 0 fractional D2-branes

can model fractional quantum Hall effect. Something interesting also happens at M = 0.

If we focus on the gauge theory part while ignoring the gravity part, the theory as given by

action (4.12) with M = 0 has an S-duality that inverts the Yang-Mills coupling, as was also

noted in a different example [24]. Since the coupling is given by gYM =
√

12π2k
R3 ∼ ( k

N )1/4,

this “S-duality” exchanges the level k and the rank N in the ABJM theory.

4.3 Flavor D6-branes and quantum Hall transition

In the previous system the Hall conductivity is fractionally quantized, and the system

describes one plateau of FQHE. In order to describe the plateau transition in FQHE,

where σxy changes continuously, we would like to add flavor D6-branes in this setup and

consider its deformation. Though the mechanism in our transition described below is very

similar to the one in D3-D7 systems discussed in [25], its interpretation is different. This

is because in our case we regard the RR field Aext as the external gauge field, whereas

– 15 –



J
H
E
P
0
7
(
2
0
0
9
)
0
6
5

in [25] the external gauge field is given by the gauge field on the D7-brane. This is the

main reason why we can realize the plateau-transition for the fractional QHE, while the

paper [25] realized the transition in the integer QHE.

In the calculation of σxy, new contributions essentially come from the Chern-Simons

terms of the D6-branes. We consider a D6-branes wrapped on S3/Z2 (2.13) in the presence

of NSNS B-field (4.2). Its non-trivial Chern-Simons terms are

SD6−RR =
1

(2π)5

∫

C3 ∧ F ∧BNS +
1

2(2π)4

∫

C1 ∧BNS ∧ F ∧ F . (4.14)

Plugging in the explicit forms of BNS and C3, we find

SD6−RR =
M

2πk
ζ

∫

R1,2

Aext ∧ F +
M

4π
ζ

∫

R1,2

A ∧ F , (4.15)

where A is the U(1) gauge field on the D6-brane and Aext is the external field induced by

the RR 3-from potential. The quantity ζ is defined by

∫

[D6]
ω ∧ ω = 16π2L4ζ , (4.16)

where [D6] is the four-dimensional worldvolume of the D6-branes in the CP
3 directions.

Here we normalized such that ζ = 1/2 when the D6-brane wraps the following 4-cycle

0 ≤ ξ <
π

4
, 0 ≤ ψ < 2π , 0 ≤ θ < π , 0 ≤ ϕ < 2π . (4.17)

After combining SD6−RR with the boundary Chern-Simons term coming from the topolog-

ical term in (4.12) and classically integrating out A, we finally obtain

Stot−RR =
M

4π

(

1

k
− ζ

k2

)
∫

R1,2

Aext ∧ Fext . (4.18)

Now we put the system at the finite temperature. The AdS4 is then replaced by a black

hole solution. We can find (at least numerically) solutions whose embedding function ξ(r)

changes smoothly from ξ(∞) = π
4 to ξ(r0) = 0 for certain large enough r0. Notice that the

point ξ = 0 is interpreted in the IIB brane configuration as where the flavor D5-brane and

the (1, k)5-brane make a N = 3 supersymmetric bound-state i.e. the (1, k+1)5-brane as is

seen from (2.23). A large value of r0 corresponds to large mass of the hypermultiplets. For

flavor masses large enough, the D6-brane does not touch the horizon. As we reduce r0 (or

equivalently the flavor mass), the D6-brane will move closer to the horizon and only stay

away from it above some critical value of r0. Then if we reduce the flavor mass further, the

D6-brane will terminate at the horizon as is known in the D3-D7 system [26]. When this

happens, the value of ζ jumps from ζ = 1/2 (for the D6-brane separated from the horizon)

to a certain value ζ = ζ0 < 1/2, as in the D3-D7 system of [25]. As the flavor mass becomes

smaller, ζ gets smaller and finally reaches ζ = 0, which corresponds to the original flavor

D6-brane. This describes half of the transition process, and the other half can be found

similarly. Therefore, as we change the flavor mass, the dual FQHE system undergoes a
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plateau transition from ν = 1
k to ν = 1

k+1 (recall that we assumed that k is large in (4.18)

so that the description of type IIA superstring theory is reliable). If we combine two D6-

branes, then we can realize more realistic transitions from ν = 1
k to ν = 1

k+2 .13 It will be

an interesting future problem to examine the above transition in more detail and calculate

how σxx and σxy change explicitly.

Finally notice that in the CFT side, this shift of the level can be understood as the

parity anomaly by adding mass to the hypermultiplets and integrating them out. As

mentioned in [13] there are three supersymmetric and one non-supersymmetric mass de-

formations. The former correspond to the shifts of ~x2 in the IIB brane configuration and

appear in the fluctuation spectrum of scalar modes in section 3. The parity anomaly only

occurs in the latter one. Therefore we expect our D6-brane configuration assumed in this

subsection to be non-supersymmetric.

5 Conclusion

In this paper, we have performed an analysis on probe branes dual to the flavors in the

N = 6 Chern-Simons theory, i.e., the ABJM theory. We found that the probe branes are

wrapped over AdS4 × S3/Z2 in the dual geometry of AdS4 × CP
3. These are classified

into two types by the Z2 Wilson line and each corresponds to a flavor for each of the two

U(N) gauge groups. The probe D6-brane is shown to preserve 12 supersymmetries, which

are the same supersymmeties of the dual N = 3 superconformal symmetry. The brane

configuration is also confirmed by the analysis of a type IIB brane configuration dual to

the ABJM theory with flavors. We obtained the spectrum of BPS mesonic operators in

the ABJM theory with flavors by analyzing the fluctuations of the dual D6-branes and

found agreements with our expectation. We also considered an application of the N = 6

Chern-Simons theory to the fractional quantum Hall effect. In the presence of fractional

D2-branes, we showed that it offers us a simple holographic setup of fractional quantum Hall

effect. Moreover, we found that mass deformations of the flavor D6-brane are interpreted

as plateau transitions of fractional quantum Hall effect.

There are several future directions we would like to consider. First of all, we have

only analyzed the flavor branes preserving the maximal supersymmetry, and it would be

important to look for branes preserving less supersymmetry. Moreover, there are other

supersymmetric Chern-Simons theories with holographic duals such as the one with the

orientifold discussed in [19]. Therefore it is possible to extend our analysis of flavor D-

branes to these cases. For the purpose of application to condensed matter physics, it is

very interesting to explicitly compute the conductivities in our setup at finite temperatures.

Furthermore, the relation to the description of the plateau transition using the Chern-

Simons Ginzburg-Landau model [27] should also be clarified.

13The elementary particles in realistic models are either purely fermions as in traditional 2DEG FQHE

systems or purely bosons as in the more recent bosonic FQHE in rotating cold atoms. Thus during a

plateau transition k jumps only among odd integers if in fermionic systems, and only among even integers

if in bosonic ones.
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Note added. While we were preparing the draft, we noticed that the paper [28] appeared

in the arXiv. It has a major overlap on the discussions of D6-branes as the holographic dual

of adding flavors in the N = 6 Chern-Simons theory, though the identification is different

in that we distinguish the two types of D6-branes. After our paper appeared on the arXiv,

we found the paper [29] listed on the same day, which also argued the same interpretation

on the flavor D6-branes as ours.
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A Supersymmetry and brane configuration

Here we count the number of supersymmetries preserved by the type IIB brane configu-

ration system discussed in section 2.5. It is convenient to combine the two chiral spinors

(16 components each) ǫL and ǫR in the type IIB supergravity by a complex 16 component

spinor as ǫ = ǫL + iǫR. In this combination it satisfies the chirality condition as

γ0123456789ǫ = ǫ . (A.1)

Let us study which kind of supersymmetry is preserved in the presence of branes. For a

D3-brane in the 0126-directions, preserved supersymmetry is associated with the spinor

satisfying

ǫ = −iγ0126ǫ . (A.2)

Similarly we have the constraint

ǫ = iγ012345 ǭ , (A.3)

for a D5-brane in the 012345-directions and

ǫ = γ012789 ǭ . (A.4)

for a NS5-brane in the 012789-directions.

First we show that this D3-D5-NS5 system preserves 1/4 of the 32 supersymmetries.

Indeed, we can derive one of the three conditions (A.2), (A.3) and (A.4) from the other

two. Diagonalizing the spinor by the actions of γ37, γ48 and γ59 as

γ37ǫ = is1ǫ , γ48ǫ = is2ǫ , γ59ǫ = is3ǫ , (A.5)

the chirality constraint (A.1) leads to

γ0126ǫ = i(s1s2s3)ǫ , γ0126ǭ = −i(s1s2s3)ǭ . (A.6)
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The degrees of freedom of spinor is specified by (s1, s2, s3) and this leads to 8 complex

components. Moreover, the condition (A.2) requires

s1s2s3 = 1 , (A.7)

and thus we have the following 4 possibilities

(s1, s2, s3) = (+ + +), (−− +), (− + −), (+ −−) . (A.8)

In this way the D3-D5-NS5 system preserves 1/4 of the 32 supersymmetries due to the

constraints (A.4) and (A.7).

In order to construct the brane configuration in section 2.5, we further insert a (1, k)5-

brane. We assumed that it is rotated by the same angle θ in each of 37, 48 and 59 planes.

If we choose that this angle θ is given by sin θ = k/
√

1 + k2 (assuming gs = 1 and vanishing

axion for simplicity), then we find the following supersymmetry constraint on the spinor as

ǫ = eiθ · γ012789 · e−θ(γ37+γ48+γ59) ǭ . (A.9)

Suppose that ǫ(0) satisfies the supersymmetric condition for the D3-D5-NS5 system. Then,

with the help of (A.4), we can find that the following spinor ǫ satisfies the condition (A.9) as

ǫ = ei
θ
2
+ θ

2
(γ37+γ48+γ59)ǫ(0) . (A.10)

Since the ǫ(0) are the spinors for the original system, we would like to find spinors that sat-

isfies ǫ = ǫ(0). They correspond to supersymmetries surviving after adding a (1, k)5-brane.

This is given by the choice (−−+), (−+−), (+−−) in the (A.8). Thus we have found that

the (1, k)5-brane further breaks 1/4 out of the original 8 supersymmetries of D3-D5-NS5

system. In this way, we have shown that this final system preserves 6 supersymmetries

corresponding to N = 3 Chern-Simons theory with flavors.

B The orbifold model on S3/Z2

In this appendix we analyze which modes of spherical harmonics survive under the Z2

orbifold projection. The symmetry of S3 is SO(4) ∼ SU(2)R×SU(2)L and the function can

be labeled by the representation of SU(2)R×SU(2)L. We denote (m, m̄) as the eigenfunction

of J3
R, J

3
L. For the scalar function in the ( l

2 ,
l
2) representation, the both run the same range

as m, m̄ = −l/2,−l/2 + 1, · · · , l/2. The scalar function satisfies

DiD
iY l

(

S3
)

= −l(l + 2)Y l
(

S3
)

, (B.1)

where Di are the covariant derivatives on S3. In our case, the identification is taken for

the shift ψ → ψ + 4π/p with p = 2, and the corresponding orbifold model is obtained by

the projection operator (see, e.g., [30, 31])

P =
1

2

(

1 + e4πiJ3
L/2

)

. (B.2)

Therefore, only 2m̄ ∈ 2Z survives under the orbifold projection, which implies l ∈ 2Z for

the scalar function. The vector spherical harmonics are in the ( l±1
2 , l∓1

2 ) representation,

and satisfy

DiD
iY l,±

j

(

S3
)

−Rk
jY

l,±
k

(

S3
)

= −(l + 1)2Y l,±
j

(

S3
)

(B.3)
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with Rk
j as the Ricci tensor of S3 . The projection is the same as in the scalar case, thus

the restriction is 2m̄ ∈ 2Z, which implies l ∈ 2Z + 1.

Let us consider the effects of Z2 Wilson loop along the non-trivial cycle. We prepare

two fractional branes with and without Z2 Wilson loop. The gauge symmetry is now

U(1) × U(1), and there are two types of open string between the same brane and between

different branes. The fields coming from the former do no feel any effect of Wilson loop

and the projection is the same as before. For the other fields coming from the latter, the

projection becomes

P =
1

2

(

1 − e4πiJ3
L

/2
)

(B.4)

due to the existence of Wilson loop. For this type of scalar field the restriction is 2m̄ ∈
2Z+1, which exists for l ∈ 2Z+1. For this type of vector field the restriction leads to l ∈ 2Z.
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